Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Soc Rev ; 49(7): 2020-2038, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32141466

RESUMO

Two-dimensional (2D) nanomaterials, such as graphene and single layer covalent organic frameworks (sCOFs) are being widely studied due to their unusual structure/property relationships. sCOFs typically feature atomic thickness, intrinsic nanoscale porosity and a crystalline lattice. Compared to other organic 2D materials, sCOFs exhibit major advantages including topological designation and constitutional tunability. This review describes the state of the art of surface-confined sCOFs, emphasizing reticular design, synthesis approaches, and key challenges related to improving quality and exploring applications.

2.
Small ; 15(45): e1903294, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31513362

RESUMO

The surface-induced anchoring effect is a well-developed technique to control the growth of liquid crystals (LCs). Nevertheless, a defined nanometer-scale template has never been used to induce the anchored growth of LCs with molecular building units. Scanning tunneling microscopy results at the solid/liquid interface reveal that a 2D covalent organic framework (COF-1) can offer an anchoring effect to template C70 molecules into forming several LC mesophases, which cannot be obtained under other conditions. Through comparison with the C60 system, a stepwise breakdown in ordering of C70 LC is observed. The process is described in terms of the effects of molecular anisotropy on the epitaxial growth of molecular crystals. The results suggest that using a surface-confined template to anchor the initial layer of LC molecules can be a modular and potentially broadly applicable approach for organizing molecular mesogens into LCs.

3.
ACS Nano ; 13(8): 9270-9278, 2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31291084

RESUMO

Ullmann coupling is one of the most frequently employed methodologies for producing π-conjugated surface-confined polymers. One unfortunate side product of the reaction is the creation of metal halide islands formed from liberated halogen atoms. Following the coupling reaction, these halide islands can account for a large proportion of the substrate surface area and thus inhibit domain growth and effectively poison the catalyst. Here, we describe an efficient and reliable methodology for removing the halogen byproduct at room temperature by exposure to a beam of atomic hydrogen; this action removes the halogen atoms in a matter of minutes, with minimal impact to the polymer structure. We also find that it is possible under certain circumstances to preserve the pre-exposure epitaxy after removal of the halogen. This finding provides a convenient and straightforward technique for addressing the most often-cited drawback of the on-surface Ullman coupling methodology and provides access to a previously inaccessible parameter space for these types of experiments.

4.
Nano Lett ; 18(12): 7570-7575, 2018 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-30403353

RESUMO

The integration of molecules with irregular shape into a long-range, dense and periodic lattice represents a unique challenge for the fabrication of engineered molecular scale architectures. The tiling of pentagonal molecules on a two-dimensional (2D) plane can be used as a proof-of-principle investigation to overcome this problem because basic geometry dictates that a 2D surface cannot be filled with a periodic arrangement of pentagons, a fundamental limitation that suggests that pentagonal molecules may not be suitable as building blocks for dense films. However, here we show that the 2D covalent organic framework (COF) known as COF-1 can direct the growth of pentagonal guest molecules as dense crystalline films at the solution/solid interface. We find that the pentagonal molecule corannulene adsorbs at two different sites on the COF-1 lattice, and that multiple molecules can adsorb into well-defined clusters patterned by the COF. Two types of these dense periodic packing motifs lead to a five-fold symmetry reduction compatible with translational symmetry, one of which gives an unprecedented high molecular density of 2.12 molecules/nm2.

5.
Chem Commun (Camb) ; 54(75): 10527-10539, 2018 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-30079923

RESUMO

Over the past two decades, solution/solid STM has made clear contributions to our fundamental understanding of the thermodynamic and kinetic processes that occur in molecular self-assembly at surfaces. As the field matures, we provide an overview of how solution/solid STM is emerging as a tool to elucidate and guide the use of self-assembled molecular systems in practical applications, focusing on small molecule device engineering, molecular recognition and sensing and electronic modification of 2D materials.

6.
J Am Chem Soc ; 139(46): 16732-16740, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29072461

RESUMO

Achieving precise control of molecular self-assembly to form designed three-dimensional (3D) structures is a major goal in nanoscale science and technology. Using scanning tunnelling microscopy and density functional theory calculations, we show that a 2D covalent organic framework (COF-1) can template solution-processed C60 guest molecules to form several solvent-dependent structural arrangements and morphologies via a 2D to 3D growth process. When 1,2,4-tricholorobenzene is used as solvent, C60 molecules form a template-defined close-packed structure. When heptanoic acid is used as solvent, a range of lower density architectures that deviate from the template-defined close packing are observed. We attribute this difference to the co-adsorption of the heptanoic acid solvent molecules, which is only achieved in the presence of the template. This work demonstrates the possibility to precisely control 3D molecular self-assembly through the synergistic combination of template and solvent effects.

7.
ACS Nano ; 11(9): 8901-8909, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28806527

RESUMO

Two-dimensional (2D) molecular self-assembly allows for the formation of well-defined supramolecular layers with tailored geometrical, compositional, and chemical properties. To date, random intermixing and entropic effects in these systems have largely been associated with crystalline disorder and glassy phases. Here we describe a 2D crystalline self-assembled molecular system that exhibits random incorporation of substitutional molecules. The lattice is formed from a mixture of trimesic acid (TMA) and terthienobenzenetricarboxylic acid (TTBTA), C3-symmetric hydrogen-bonding units of very different sizes (0.79 and 1.16 nm, respectively), at the solution-highly oriented pyrolitic graphite (HOPG) interface. Remarkably, the TTBTA substitutes into the TMA lattice at a fixed stoichiometry near 12%. The resulting lattice constant is consistent with Vegard's law prediction for an alloy with a composition TMA0.88TTBTA0.12, and the substrate orientation of the lattice is defined by an epitaxial relation with the HOPG substrate. The Gibbs free energy for the TMA/TTBTA lattice was elucidated by considering the entropy of intermixing, via Monte Carlo simulations of multiplicity of the substitutional lattices, and the enthalpy of intermixing, via density functional theory calculations. The latter show that both the bond enthalpy of the H-bonded lattice and the adsorption enthalpy of the molecule/substrate interactions play important roles. This work provides insight into the manifestation of entropy in a molecular crystal constrained by both epitaxy and intermolecular interactions and demonstrates that a randomly intermixed yet crystalline 2D solid can be formed through hydrogen bonding of molecular building blocks of very different size.

8.
J Chem Phys ; 142(10): 101923, 2015 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-25770512

RESUMO

Model systems are critical to our understanding of self-assembly processes. As such, we have studied the surface self-assembly of a small and simple molecule, indole-2-carboxylic acid (I2CA). We combine density functional theory gas-phase (DFT) calculations with scanning tunneling microscopy to reveal details of I2CA assembly in two different solvents at the solution/solid interface, and on Au(111) in ultrahigh vacuum (UHV). In UHV and at the trichlorobenzene/highly oriented pyrolytic graphite (HOPG) interface, I2CA forms epitaxial lamellar structures based on cyclic OH⋯O carboxylic dimers. The structure formed at the heptanoic acid/HOPG interface is different and can be interpreted in a model where heptanoic acid molecules co-adsorb on the substrate with the I2CA, forming a bicomponent commensurate unit cell. DFT calculations of dimer energetics elucidate the basic building blocks of these structures, whereas calculations of periodic two-dimensional assemblies reveal the epitaxial effects introduced by the different substrates.

9.
Chem Asian J ; 8(8): 1813-7, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23757211

RESUMO

The supramolecular self-assembly of brominated molecules was investigated and compared on Cu(110) and Cu(110)-O(2×1) surfaces under ultrahigh vacuum. By using scanning tunnelling microscopy, we show that brominated molecules form a disordered structure on Cu(110), whereas a well-ordered supramolecular network is observed on the Cu(110)-O(2×1) surface. The different adsorption behaviors of these two surfaces are described in terms of weakened molecule-substrate interactions on Cu(110)-O(2×1) as opposed to bare Cu(110). The effect of oxygen-passivation is to suppress debromination and it can be a convenient approach for investigating other self-assembly processes on copper-based substrates.

10.
ACS Nano ; 7(2): 1652-7, 2013 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-23327546

RESUMO

The imaging and characterization of single-molecule reaction events is essential to both extending our basic understanding of chemistry and applying this understanding to challenges at the frontiers of technology, for example, in nanoelectronics. Specifically, understanding the behavior of individual molecules can elucidate processes critical to the controlled synthesis of materials for applications in multiple nanoscale technologies. Here, we report the synthesis of an important semiconducting organic molecule through an unprecedented reaction observed with submolecular resolution by scanning tunneling microscopy (STM) under ultrahigh vacuum (UHV) conditions. Our images reveal a sulfur abstraction and cyclization reaction that converts tetrathienoanthracene precursors into pentacene on the Ni(111) surface. The identity of the final reaction product was confirmed by time-of-flight secondary ion mass spectrometry (TOF-SIMS). This reaction has no known literature analogue, and highlights the power of local-probe techniques for exploring new chemical pathways.

11.
Langmuir ; 29(24): 7318-24, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23327627

RESUMO

Investigations of the self-assembly of simple molecules at the solution/solid interface can provide useful insight into the general principles governing supramolecular chemistry in two dimensions. Here, we report on the assembly of 3,4',5-biphenyl tricarboxylic acid (H3BHTC), a small hydrogen bonding unit related to the much-studied 1,3,5-benzenetricarboxylic acid (trimesic acid, TMA), which we investigate using scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. STM images show that H3BHTC assembles by itself into an offset zigzag chain structure that maximizes the surface molecular density in favor of maximizing the number density of strong cyclic hydrogen bonds between the carboxylic groups. The offset geometry creates "sticky" pores that promote solvent coadsorption. Adding coronene to the molecular solution produces a transformation to a high-symmetry host-guest lattice stabilized by a dimeric/trimeric hydrogen bonding motif similar to the TMA flower structure. Finally, we show that the H3BHTC lattice firmly immobilizes the guest coronene molecules, allowing for high-resolution imaging of the coronene structure.

12.
Nanoscale ; 4(19): 5965-71, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-22895808

RESUMO

Weak interactions between bromine, sulphur, and hydrogen are shown to stabilize 2D supramolecular monolayers at the liquid-solid interface. Three different thiophene-based semiconducting organic molecules assemble into close-packed ultrathin ordered layers. A combination of scanning tunneling microscopy (STM) and density functional theory (DFT) elucidates the interactions within the monolayer. Electrostatic interactions are identified as the driving force for intermolecular Br···Br and Br···H bonding. We find that the SS interactions of the 2D supramolecular layers correlate with the hole mobilities of thin film transistors of the same materials.

13.
J Am Chem Soc ; 131(46): 16844-50, 2009 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-19919147

RESUMO

Scanning tunneling microscopy (STM) of monolayers comprising oligothiophene and fullerene molecular semiconductors reveals details of their molecular-scale phase separation and ordering with potential implications for the design of organic electronic devices, in particular future bulk heterojunction solar cells. Prochiral terthienobenzenetricarboxylic acid (TTBTA) self-assembles at the solution/graphite interface into either a porous chicken wire network linked by dimeric hydrogen bonding associations of COOH groups (R(2)(2) (8)) or a close-packed network linked in a novel hexameric hydrogen bonding motif (R(6)(6) (24)). Analysis of high-resolution STM images shows that the chicken wire phase is racemically mixed, whereas the close-packed phase is enantiomerically pure. The cavities of the chicken wire structure can efficiently host C60 molecules, which form ordered domains with either one, two, or three fullerenes per cavity. The observed monodisperse filling and long-range co-alignment of fullerenes is described in terms of a combination of an electrostatic effect and the commensurability between the graphite and molecular network, which leads to differentiation of otherwise identical adsorption sites in the pores.

14.
ACS Nano ; 3(11): 3347-51, 2009 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-19928932

RESUMO

The scanning tunneling microscope (STM) has evolved continually since its invention, as scientists have expanded its use to encompass atomic-scale manipulation, momentum-resolved electronic characterization, localized chemical reactions (bond breaking and bond making) in adsorbed molecules, and even chain reactions at surfaces. This burgeoning field has recently expanded to include the use of the STM to inject hot electrons into substrate surface states; the injected electrons can travel laterally and induce changes in chemical structure in molecules located up to 100 nm from the STM tip. We describe several key demonstrations of this phenomenon, including one appearing in this issue of ACS Nano by Chen et al. Possible applications for this technique are also discussed, including characterizing the dispersion of molecule-substrate interface states and the controlled patterning of molecular overlayers.

15.
Chem Commun (Camb) ; (10): 1192-4, 2009 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-19240870

RESUMO

The results of a high-resolution ambient STM study of 'sulflower' (octathio[8]circulene) and 'selenosulflower' (sym-tetraselena-tetrathio[8]circulene) molecules, immobilized in a hydrogen-bonded matrix of trimesic acid (TMA) at the solid-liquid interface, are compared with the STM and X-ray structure of separate host and guest 2D and 3D crystals, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...